< 返回技术文档列表

Python中切片迭代列表生成式及生成器的示例分析

发布时间:2021-11-07 02:01:07

小编给大家分享一下Python中切片迭代列表生成式及生成器的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

在Python中,代码越少越好、越简单越好。基于这一思想,需要掌握Python中非常有用的高级特性,1行代码能实现的功能,决不写5行代码。代码越少,开发效率越高。

切片

tuple,list,字符串都可以进行切片操作

L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
L[0:3] # ['Michael', 'Sarah', 'Tracy']
L[:3] # ['Michael', 'Sarah', 'Tracy']
L[1:3] # ['Sarah', 'Tracy']
L[-2:] # ['Bob', 'Jack']
L[-2:-1] # ['Bob']

L = list(range(100))
L[:10] # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
L[-10:] # [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
L[10:20] # [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
L[:10:2] # [0, 2, 4, 6, 8]
L[::5] # [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
L[:] # [0, 1, 2, 3, ..., 99]

练习

利用切片操作,实现一个trim()函数,去除字符串首尾的空格,注意不要调用str的strip()方法:

# -*- coding: utf-8 -*-
def trim(s):
    for i in range(0,len(s)):
        if s[0] == ' ':
            s = s[1:]
        elif s[-1] == ' ':
            s = s[:-1]

    return s

迭代

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环
如何判断一个对象是可迭代对象呢?方法是通过collections.abc模块的Iterable类型判断
Python内置的enumerate函数可以把一个list变成索引-元素对,可以在for循环中同时迭代索引和元素本身

for i, value in enumerate(['A', 'B', 'C']):
    print(i, value)

练习

请使用迭代查找一个list中最小和最大值,并返回一个tuple:

# -*- coding: utf-8 -*-
def findMinAndMax(L):
    max = min = None

    if(len(L)>0):
        L = list(L)
        max = min = L[0]
        for i in L:
            if i>max:
                max = i
            if i<min:
                min = i
    
    return (min,max)

列表生成式

列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式

list(range(1, 11)) # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[x * x for x in range(1, 11)] # [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
[x * x for x in range(1, 11) if x % 2 == 0] # [4, 16, 36, 64, 100]
[m + n for m in 'ABC' for n in 'XYZ'] # ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

# 列表生成式也可以使用两个变量来生成list
d = {'x': 'A', 'y': 'B', 'z': 'C' }
[k + '=' + v for k, v in d.items()] # ['y=B', 'x=A', 'z=C']

L = ['Hello', 'World', 'IBM', 'Apple']
[s.lower() for s in L] # ['hello', 'world', 'ibm', 'apple']

在一个列表生成式中,for前面的if … else是表达式,而for后面的if是过滤条件,不能带else

[x for x in range(1, 11) if x % 2 == 0] # Right
[x for x in range(1, 11) if x % 2 == 0 else 0] # WRONG!

[x if x % 2 == 0 else -x for x in range(1, 11)] # Right
[x if x % 2 == 0 for x in range(1, 11)] # WRONG!

练习

如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()方法,所以列表生成式会报错。使用内建的isinstance函数可以判断一个变量是不是字符串。请修改列表生成式,通过添加if语句保证列表生成式能正确地执行:

# -*- coding: utf-8 -*-
L1 = ['Hello', 'World', 18, 'Apple', None]
L2 = [s.lower() for s in L1 if isinstance(s,str)]

生成器

如果列表元素可以按照某种算法推算出来,则可以在循环的过程中不断推算出后续的元素,这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
创建generator的方法:
1.把一个列表生成式的[]改成(),就创建了一个generator,创建之后通过next可以得到下一个元素,或者通过for循环迭代(generator也是可迭代对象)

# 生成一个迭代器
g = (x * x for x in range(10))
# 获得下一个元素
next(g) # 0
# for循环遍历
for n in g:
    print(n)

2.使用yield,如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator函数,调用一个generator函数将返回一个generator
generator函数在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行
调用generator函数时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值

# 斐波拉契数列的生成
def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

# 调用
f = fib(6)
next(f)

# for循环调用
while True:
    try:
        x = next(g)
        print('g:', x)
    except StopIteration as e:
        print('Generator return value:', e.value)
        break

用for循环调用generator时,拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中

练习

杨辉三角定义如下:

  1
     / \
    1   1
   / \ / \
  1   2   1
 / \ / \ / \
1   3   3   1

把每一行看做一个list,试写一个generator,不断输出下一行的list:

# -*- coding: utf-8 -*-
def triangles():
    levellist = [1]
    n = 1
    while (n<=100):
        yield levellist
        newlist = levellist.copy()
        if (n>=2):
            for i in range(0,n-1):
                newlist[i+1] = levellist[i] + levellist[i+1]
        levellist = newlist.copy()
        n = n + 1
        levellist.append(1)
    return 'done'

迭代器

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
可以使用isinstance()判断一个对象是否是Iterator对象:
生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。把list、dict、str等Iterable变成Iterator可以使用iter()函数

为什么list、dict、str等数据类型不是Iterator?
因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

Python的for循环本质上就是通过不断调用next()函数实现的

看完了这篇文章,相信你对“Python中切片迭代列表生成式及生成器的示例分析”有了一定的了解,如果想了解更多相关知识,欢迎关注血鸟云行业资讯频道,感谢各位的阅读!


/template/Home/Zkeys/PC/Static